Experimental Validation of the Lower Leg Trajectory Error, an Optimization Metric for Prosthetic Feet
نویسنده
چکیده
In India alone, there are about one million people with lower limb amputation who require significantly more effort to walk than able-bodied individuals. They are subject to social stigmas preventing them from employment and independent living. There is a gap between the high-performance prosthetic feet in the United States that come at a cost of thousands of dollars and affordable prostheses in the developing world, which lack quality, durability and performance. The aim of this project was to design a high-performance, mass-manufacturable passive prosthetic foot for Indian amputees that complies with international standards at an affordable cost. This work was conducted in collaboration with Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS, the Jaipur Foot organization), in Jaipur, India. Through a novel, quantitative method called Lower Leg Trajectory Error (LLTE) which maps the mechanical design of a prosthetic foot to its biomechanical performance, we can optimize the compliance and geometry of a passive prosthesis to replicate able-bodied gait and loading on the foot using affordable materials. This thesis is focused on evaluating the accuracy and validity of the LLTE as a novel design tool. To validate feet designed using the LLTE, field trials and clinical testing were performed on prosthetic feet prototypes with varying stiffnesses and geometries. The novel merits of these prototypes are that they can replicate a similar quasi-stiffness and range of motion of a physiological ankle using interchangeable custom U-shaped constant stiffness springs ranging from 1.5 to 24 Nm/deg and having up to 30∘ of range of motion. Initial testing conducted using these feet validated the consitutive model of the LLTE and suggested that prosthetic feet designed with lower LLTE values could offer benefits to the user. In future work, the validated design tool will be used to create high-performance, low-cost and mass-manufacturable prosthetic feet for amputees, throughout the developing world and in the developed world. Thesis Supervisor: Amos G. Winter, V Title: Associate Professor of Mechanical Engineering
منابع مشابه
Design and Evaluation of a Magnetorheological Damper Based Prosthetic Knee
In this work, a magnetorheological (MR) damper based above-knee prosthesis is design and evaluated based on its performance in swing phase and in stance phase. Initially, a dynamic system model for swing phase of a prosthetic leg incorporating a single-axis knee with ideal MR damper was built. The dynamic properties of the damper are represented with Bingham parametric model. From Bingham model...
متن کاملOptimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.
Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR)...
متن کاملBiomechanical Analysis of the Influence of SACH Foot and Dynamic-Response Foot in Individual With Unilateral Transtibial Amputee During Running
Objective: Amputation of the lower limb due to loss of part of the musculoskeletal structure reduces performance and increases injury during locomotion. The effect of various types of prosthetic feet has been analyzed in several studies during running. The purpose of this study was a biomechanical analysis of the influence of SACH and Dynamic-Response foot on several kinetic variables in the st...
متن کاملAn Intelligent Algorithm for Optimization of Resource Allocation Problem by Considering Human Error in an Emergency Department
Human error is a significant and ever-growing problem in the healthcare sector. In this study, resource allocation problem is considered along with human errors to optimize utilization of resources in an emergency department. The algorithm is composed of simulation, artificial neural network (ANN), design of experiment (DOE) and fuzzy data envelopment analysis (FDEA). It is a multi-response opt...
متن کاملStiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کامل